Temporal and spatial characteristics of vibrissa responses to motor commands.
نویسندگان
چکیده
A mechanistic description of the generation of whisker movements is essential for understanding the control of whisking and vibrissal active touch. We explore how facial-motoneuron spikes are translated, via an intrinsic muscle, to whisker movements. This is achieved by constructing, simulating, and analyzing a computational, biomechanical model of the motor plant, and by measuring spiking to movement transformations at small and large angles using high-precision whisker tracking in vivo. Our measurements revealed a supralinear summation of whisker protraction angles in response to consecutive motoneuron spikes with moderate interspike intervals (5 ms < Deltat < 30 ms). This behavior is explained by a nonlinear transformation from intracellular changes in Ca(2+) concentration to muscle force. Our model predicts the following spatial constraints: (1) Contraction of a single intrinsic muscle results in movement of its two attached whiskers with different amplitudes; the relative amplitudes depend on the resting angles and on the attachment location of the intrinsic muscle on the anterior whisker. Counterintuitively, for a certain range of resting angles, activation of a single intrinsic muscle can lead to a retraction of one of its two attached whiskers. (2) When a whisker is pulled by its two adjacent muscles with similar forces, the protraction amplitude depends only weakly on the resting angle. (3) Contractions of two adjacent muscles sums up linearly for small amplitudes and supralinearly for larger amplitudes. The model provides a direct translation from motoneuron spikes to whisker movements and can serve as a building block in closed-loop motor-sensory models of active touch.
منابع مشابه
Privacy Spatial and Temporal Distances in Nomadic Settelments
Human always in interaction with their social environment, have consider some degree of privacy with different purposes, for themselves, the people around them and carry out their activities. Creating privacy depends on two elements; subjective meanings that ruling the creation of privacy, and the second sentence are person available facilities. Privacy is not seen, heard, smelled and availabil...
متن کاملSpatiotemporal organization of fast (>200 Hz) electrical oscillations in rat Vibrissa/Barrel cortex.
A 64-channel electrode array was used to study the spatial and temporal characteristics of fast (>200 Hz) electrical oscillations recorded from the surface of rat cortex in both awake and anesthetized animals. Transient vibrissal displacements were effective in evoking oscillatory responses in the vibrissa/barrel field and were tightly time-locked to stimulus onset, coinciding with the earliest...
متن کاملSpatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex.
Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. J. Neurophysiol. 80: 2882-2892, 1998. Whole cell recordings of synaptic responses evoked by deflection of individual vibrissa were obtained from neurons within adult rat primary somatosensory cortex. To define the spatial and temporal properties of subthreshold receptive fields, the...
متن کاملTemporal modulation of spatial borders in rat barrel cortex.
We examined the effects of varying vibrissa stimulation frequency on intrinsic signal and neuronal responses in rat barrel cortex. Optical imaging of intrinsic signals demonstrated that the region of cortex activated by deflection of a single vibrissa at 1 Hz is more diffuse and more widespread than the territory activated at 5 or 10 Hz. With the use of two different paradigms, constant time of...
متن کاملWhat makes whiskers shake? Focus on "Current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat".
As one researcher once put it—“to beat the night with sticks” (D. Kleinfeld, personal communication)—might be only option for a small mammal to find its way through the dark holes it is living in. Rats employ such a strategy and explore their environment by fast rhythmic whisker movements. Whisking is generated by a highly specialized (Dörfl 1982) fast-muscle-fiber-dominated (Jin et al. 2004) m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 26 شماره
صفحات -
تاریخ انتشار 2010